• English
    • français
  • English 
    • English
    • français
  • Login
View Item 
  •   DSpace Home
  • Mémoires de Master
  • Faculté des Sciences
  • Département de Mathématiques
  • View Item
  •   DSpace Home
  • Mémoires de Master
  • Faculté des Sciences
  • Département de Mathématiques
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Programmation mathématique stochastique et application

Thumbnail
View/Open
877 Ko (877.0Kb)
Date
2018
Author
Bellebia, Mehdi
Loudahi, Lamia
Metadata
Show full item record
Abstract
Notre travail se résume comme suit: Dans le premier chapitre, nous avons défini et rappelé quelques notions sur les variables aléatoires (discrètes et continues) et leurs propriétés (la loi de distribution, la fonction de densité, fonction de répartition, espérance mathématique, variance, covariance , écart type, et la matrice de covariance ). Ensuite le deuxième chapitre est réservé à la présentation de la programmation linéaire mono- objective et multi-objective, dans la première partie de ce chapitre on a traité le cas mono- objectif, et on a utilisé les méthodes du simplexe pour la résolution d'un problème de programmation linéaire, et on a terminé cette partie par un exemple. Dans la deuxième partie on a traité le cas multi-objectif, dont on a cité la dominance et l'efficacité d'une solution, la résolution par méthode du simplexe. Le troisième chapitre est partagé en deux parties, la programmation linéaire stochastique mono objectif et la programmation linéaire stochastique multi-objectif .Dans la première partie on a défini un problème linéaire stochastique mono-objectif et on a cité deux approches ( Passive et active ) de résolution de ce dernier et quelques critères d'optimisation du problème équivalent lorsque l'objectif est aléatoire (E-modèle, V-modèle, EV-modèle, P- modèle, katoka). Quelques modèles lorsque les contraintes sont aléatoires (Seuil de probabilités sur les contraintes, recours général, fixe, et fixe simple) et deux exemples. Dans la deuxième partie de ce chapitre on a étudié le cas d'un programme linéaire multi-objectif stochastique, dont on a cité le programme du risque minimal multiple, et stochastique goal programming. Dans le quatrième chapitre on a parlé de la programmation mathématique (cas non linéaire), on a défini quelques notions de base, la classification d'un programme mathématique, qualification des contraintes, l'existence et l'unicité d'une solution, et on a cité les conditions d'optimalité de 1 ere et 2 eme ordre pour les cas avec contraintes et sans contraintes , et pour la programmation non linéaire stochastique nous avons donné deux modèles; l'un est fractionnaire, il se résout par l'algorithme de A.Cambini, et l autre fait appel a une optimisation globale ce qui engendre la complexité de résolution de ce dernier, et enfin nous avons terminé ce chapitre par la résolution de deux problèmes stochastiques non linéaires. Le cinquième chapitre se base sur le coté de programmation
URI
https://dl.ummto.dz/handle/ummto/2605
Collections
  • Département de Mathématiques [254]

  • Université Mouloud MAMMERI T-O
  • Contact
Adresse Universite Mouloud MAMMERI Tizi-Ouzou 15000 Algerie
 

 


  • Université Mouloud MAMMERI T-O
  • Contact
Adresse Universite Mouloud MAMMERI Tizi-Ouzou 15000 Algerie