Mémoire de fin d’Eudes en vue de l’obtention d’un master en sciences agronomiques

Spécialité : protection des plantes cultivée

Thème :

Etude de l’effet acaricide de deux huiles essentielles contre l’acarien Varroa destructor parasité de l’abeille domestique (Apis mellifera).

Réalisé par :

Mlle MEKAOUI SARAH

Devant le jury composé de :

Mme AOUAR-SADLI Malika U.E.A UMMTO Président
Mme MEDJDOUB-BENSAAD Ferroudja Professeur UMMTO promotrice
Mme HABBI. Assia doctorante UMMTO Co- Promotrice
Mme BOUAZIZ Houria M.A.A UMMTO Examinateur

Remerciements

Je remercie Dieu Tout Puissant d’avoir accordé la force, le courage et les moyens afin de pouvoir accomplir cet travail.

Je remercie tout particulièrement Mme MEDJDOUB F., Professeur au département de biologie de l’UMMTO, pour ses précieux conseils, ses encouragements et surtout d’avoir accepté de participer au jury de cette thèse.

À madame HABBIA, pour ces orientations, ces conseils et l’aide qu’il m’a donné.

À madame AOUAR-SADLI Malikaparsapprésenceentantqueprésident dejury.

À madame BOUAZIZ Houria qui a bien voulu examiner ce présent travail.

À Tous les enseignants de département d’agronomie.

Jetiensàremercierl’équipe delabibliothèque, également je remercie l’ingénieur delaboratoireHASSINAdetousqu’il monaide.

Messincèresremercie Enfin, j’invitetasceux quiont contribué depuis deloin à l’exécution de ce modeste travail, qu’il a trouvé plus vifs mes remerciements. Percemment à tous ma famille et tous les amis.
Sommaire
Chapitre I : Généralités sur l’abeille domestique

1-Diversité naturelle sur l’abeille domestique ... 3
2- systématique ... 3
3-Biologie d’Apis mellifera ... 3
3-1-Lacolnienie .. 3
3-2-Cycle de vie d’abeille A. mellifera .. 5
4-Rôle A. mellifera ... 6
4-2-Rôle de bio-indicateur .. 6
4-3-Rôle économique .. 7
5- Maladies et les ennemis biologiques de l’abeille domestique 7
5-1-Maladies des abeilles ... 7
5-1-2-Maladies des adultes ... 8
5-1-3-Maladies communes au couvain et aux abeilles ... 9
5-2- Les ennemis de l’abeille domestique .. 10

Chapitre II : LE varroa et son effet sur l’abeille domestique

1-systématique ... 11
2-Biologie de varroa .. 11
2-1-Morphologie de parasite ... 11
2-2- Cycle de développement .. 12
3-Les symptômes des varroas ... 13
4- Les moyens de lutte contre V. destructor ... 14
4-1-Lutte chimique ... 14
Chapitre III : Matériel et méthode

1- Présentation dumilieud’étude..17
1-1- situationgéographie .. 17
1-2- climat.. 17
1-3- Lapluviométrie ... 18
1-4- Les Températures .. 18

2- Matériel .. 19
2-1- matériel utilisé pour l’échantillonnage du couvain et des abeilles 19
2-1-1- Sur le terrain ... 19
2-1-2- Aulaboratoire .. 19

2-2- matériel utilisé pour ladéterminationdel’effet caricide des huiles essentielles .. 22

3- méthode .. 23
3-1- Méthode d’échantillonnage du couvain et des abeilles 23
3-2- Méthode d’échantillonnageduvarroa .. 23
3-3- Méthode utilisée pour tester l’effet des huiles essentielles sur le varroa 23
3-4- Méthode utilisée pour tester l’effet des huiles sur l’abeilleaulaboratoire 25
3-5- Analysestatistique ... 26

Chapitre IV: Résultats

1- Détermination del’huileet ladoseefficaceau laboratoire .. 27
1-1- Effet de l’huile sur le varroa ... 27
1-2- Effet de l’huile sur les abeilles .. 28
2- Étude de l'efficacité des deux huiles sur le terrain ... 30

2-1 Traitement du lot A par l'huile essentielle de lentisque ... 30

2-1-1 Évolution de la mortalité du Varroa dans le lot A ... 30

3-1-2 Efficacité de l'huile de lentisque ... 31

2-2 Traitement du lot B par le traitement chimique Apistan® ... 31

2-2-1 Evolution de la mortalité du Varroa dans le lot B .. 31

3-2-2 Efficacité de Apistan .. 34

3-3 Le lot C (témoin) sans traitement .. 33

Discussion .. 34

Conclusion et perspectives ... 36

Références bibliographiques

Annexes
Listes des figures
Liste des Tableaux
Tableau 1 : Répartition des lots ... 25

Tableau 2 : Résultats du test de Newman et Keuls concernant l’influence des huiles essentielles et la dose sur la mortalité du varroa ... 28

Tableau 3 : Résultats du test de Newman et Keuls concernant l’influence des huiles essentielles et la dose sur la mortalité des abeilles ... 29

Tableau 5 : Détermination de l’efficacité de l’huile essentielle d’elentisque .. 31

Tableau 6 : Détermination de l’efficacité d’Apistan® .. 32

Tableau 7 : Résultats comparatifs concernant l’efficacité de divers traitements ... 33
INTRODUCTION
L’abeille domestique *Apis mellifera* est essentielle à la vie sur terre et constitue un modèle privilégié pour les scientifiques. Son étude permet de mieux connaître la contribution de cet insecte sur le plan écologique et économique (CHARPENTIER, 2013). En effet, cet insecte présente un intérêt économique très important ; non seulement par rapport à ses différents produits exploités comme : le miel, le pollen, la gelée royale….etc. mais aussi par son rôle fondamentale dans la pollinisation et par conséquent la survie de différentes plantes végétales sauvages et cultivées ainsi que le maintien de la biodiversité des écosystèmes (STRAUB, 2007). Sa disparition entrainerait de graves problèmes pour la nature et pour l’espèce humaine. Pour cela la conservation de l’abeille est une préoccupation majeure de l’Homme.

En effet, l’abeille est exposée à divers agents défavorables tels que le changement climatique, modifications du paysage entraînant la réduction des ressources florales, l’exposition à des substances chimiques (produits phytosanitaires), ainsi que de différentes pathologies dont la plus redoutable et la plus répandue est « la varroas ». Celle-ci est due à un acarien ectoparasite appelé *Varroa destructor* (STRAUB, 2007).

Cet acarien se reproduit et se développe dans le couvain puis à l’émergence de la jeune abeille, la femelle varroa et ses filles cherchent à parasiter d’autres abeilles adultes. L’infestation de l’abeille domestique par ce parasite engendre son affaiblissement progressif puis l’effondrement des colonies.

Diverses méthodes de contrôle de cet acarien ont été étudiées. Comme les méthodes biotechniques (BOOT et al, 1995), biologiques (NAZZI et al, 2004), Génétiques (MARTIN et al, 2001), et chimiques par l’utilisation des molécules chimiques. Ces dernières sont celles qui sont les plus utilisées sur le terrain (MAGGI et al, 2009; CALDERONE, 2010). Les traitements chimiques correspondent à l’utilisation de plusieurs familles de pesticides à l’intérieur de la ruche (BOGDANOV, 2006; HANBRUGE et al., 2006). Divers travaux ont montré que ces acaricides utilisés entraînaient des modifications dans la signalisation cellulaire (perturbent l’ouverture des canaux sodium voltage-dépendant, agonistes des récepteursd’octopaminedesynapsesexcitatriessystemsériaux….etc.)(DANKA
et RINDERER, 1986), de résidus de pesticide dans le miel et dans la cire (WALNER, 1999; BERRY, 2009). De plus, le fluvalinate présente des effets secondaires néfastes sur la santé de l’abeille (STONER et al, 1985; SOKOL, 1996), d’où l’importance de s’orienter vers des molécules naturelles de moindre toxicité et non polluantes tels que les acides organiques (acide oxalique, acide formique) et les huiles essentielles comme celles que nous utilisons dans notre travail (myrte et lentisque), qui sont présentent naturellement dans le miel (BOGDANOV et al, 2002).

C’est dans ce contexte que s’inscrit notre étude dont l’objectif est de déterminer au laboratoire l’effet acaricide de deux huiles essentielles du myrte et du lentisque sur le parasite *V. destructor* ainsi que leurs effets sur l’abeille locale *A. mellifera* Intermissa.

Notre étude comporte deux parties :

la partie bibliographique qui porte sur les généralité sur l’abeille domestique (*Apis mellifera*) et une étude détaillée sur le parasite *Varroa destructor* avec un moyens de lutte utilisés contre ce dernier, et la partie expérimentale est réservée à la présentation du milieu d’étude et à la détermination au laboratoire de l’efficacité de deux huiles essentielles (lentisque et myrte) dans la lutte biologique contre ce parasite présentée dans le 3 e méme chapitre ,en fini par une conclusion et desperspectives.
CHAPITRE I :
Généralités sur l’abeille domestique
Chapitre I

Généralité sur l’abeille domestique (Apis mellifera)

1- Diversité naturelle sur l’abeille domestique

L’abeille domestique appartient à l’ordre des hyménoptères, à la superfamille des apoïdea et au genre Apis (GIRAUNDET, 2008). A. mellifère est différenciée en quatre lignées évolutives chacune regroupant plusieurs races géographiques: la lignée M (races ouest-méditerranéennes), la lignée A (races africaines), la lignée C (races nord-méditerranéennes), et la lignée O (races de Turquie et du Caucase) (GARNERY et al., 1993 ; GARNERY et al., 1992). Chacune de ces lignées s’est diversifiée en plusieurs sousespèces.

Apis mellifera comporte actuellement 27 sous espèces décrites jusqu’à présent sur la base de caractères morphologiques, génétiques, écologiques et comportementaux (RUTTNER, 1988 ; MEXNER et al., 2011).

2- systématique

LE CONTE (2006), Apis mellifera appartient à la classification suivante :

Embranchement : Arthropoda
Classe : Insecta
Sous classe : Pterygota
Ordre : Hymenoptera
Sous ordre : Apocrita
Famille : Apidae
Genre : Apis
Espèce : Apis mellifera

3-Biologie d’Apis mellifera

3-1-La colonie

L’abeille domestique est un insecte social qui vit en colonie de 20000 à 50000 individus (PROST et LE CONTE, 2005). Cette colonie est composée de trois castes : la reine, les ouvrières et faux-bourdons (PROST, 1990) (Fig. 1).
3-1-1-La reine

La reine est l’unique femelle capable de se reproduire. Ses principales fonctions sont la ponte des œufs et la régulation des activités de la colonie par la sécrétion des phéromones produite par les glandes mandibulaires (stimulation de la production de cire, inhibition de la construction d’alvéoles royales, inhibition du développement ovarien des ouvrières) (LE CONTE, 2004). Elle se caractérise par sa longue taille et son abdomen très développé. La durée de vie de la reine est de 3 à 4 ans (MARTIN, 2009).

3-1-2-Les ouvrières

Ce sont des femelles stériles (non reproductrices) mais possèdent des organes spécialisés pour la récolte de nourriture, la construction ou la défense du nid (PHAN-DELEGUE, 1998). En effet, à sa naissance l’ouvrière est nettoyeuse puis devient cirière, magasinière, gardienne et butineuse jusqu’à la fin de ses jours (SPURGIN, 2008).

Deux catégories d’ouvrières se succèdent au cours de l’année : les abeilles d’été qui vivent environ quarante jours (entre trois et six semaines) et les abeilles d’hiver qui survivent jusqu’au printemps suivant, soit quatre à cinq mois. Les abeilles d’été voient leurs tâches évoluer en fonction de leur âge (LE CONTE, 2004).

3-1-3-Faux-bourdons ou mâles

La colonie d’abeilles ne renferme que plusieurs centaines de faux bourdons et sont présents durant quelques mois seulement (GARY, 1992). Ils se caractérisent par un gros
abdomen, absence de dard et d’organes adaptés pour la récolte de nectar et de pollen (SUCHAIL, 2001).

Leur fonction principale est la fécondation des reins ; mais ils participeraient aussi à la
4- Rôle d’*Apis mellifera*

L’abeille domestique est la sentinelle de l’environnement car elle participe à plusieurs rôles :

4-1- Rôle de pollinisateur

4-2- Rôle de bio-indicateur

L’abeille peut également être utilisée comme bio indicateur de la santé de l’écosystème dans lequel elle évolue. En effet, les butineuses explorent une grande zone de plusieurs kilomètres carrés autour de la ruche et y rapportent leur récolte. En observant la mortalité des abeilles et en détectant les résidus de pesticides, métaux lourds ou molécules radioactives dans les produits de la ruche, l’abeille domestique permet ainsi de détecter les polluants organiques et inorganiques dans son environnement (TOULLEC, 2008).

4-3- Rôle économique

En butinant les fleurs à la recherche de nectar et de pollen, l’abeille participe activement à la pollinisation de la flore sauvage tel que : l’aubépine (*Crataegus oxyacantha*), l’églantier (*Rosa canina*), le sorbier (*Sorbus domestica*) mais également des plantes cultivées, favorisant ainsi leur reproduction et améliorant les récoltes (TOULLEC, 2008).

5- Les maladies et les ennemis biologiques de l’abeille domestique

5-1- Les maladies des abeilles

Les principales maladies qui affectent l’abeille *A. mellifera* sont regroupées en trois groupes :
Chapitre I Généralité sur l’abeille domestique (Apis mellifera)

5-1-1- Maladies du couvain

Elles se propagent par la nourriture, essentiellement par la bouillie larvaire donnée aux immatures. On distingue :

5-1-1-1- la loqueaméricaine

D’après FERNANDEZ et COINEAU (2007), la loque américaine est une maladie infectieuse du couvain et l’agent responsable est une bactérie gram+ *Paenibacillus larvae* qui contamine la jeune larve, c’est une maladie réputée contagieuse (MRC) (HEYNDRICKX et al. 1996). *P. larvae* se présente sous deux formes, végétative et sporulée. Les spores sont extrêmement thermostables et résistantes aux agents chimiques. Seules les spores sont capables d’induire la maladie et font de *P. larvae* sa dangerosité. La maladie se traduit par la mort des larves altérant le renouvellement des ouvrières. Les larves sont visqueuses et le couvain est en mosaïque et une odeur caractéristique se dégage à l’ouverture d’une ruche fortement atteinte (VIDAL-NAQUET, 2010).

Les colonies fortement infectées peuvent dépéris. Le développement et la propagation du bacille de la loque américaine sont favorisés par différents facteurs, notamment le pillage (vol des provisions d’une ruche par des abeilles étrangères à cette ruche) et la dérive (des abeilles domestiques qui entrent dans une autre ruche que la leur), les souches d’abeilles au comportement hygiénique insuffisant et les pratiques apicoles à risque.

5-1-1-2-La loque européenne

Le mode de transmission de cette maladie est pareille identique à celui de la loque américaine.

5-1-2- Maladies des adultes
5-1-2-1- Nosémosé

La nosémosé est une maladie des trois castes d’abeilles adultes qui affecte le système digestif, elle est due au micro sporidies du genre Nosema. Ce sont des eucaryotes unicellulaires apparents aux champignons. Au cours de son cycle, Nosema peut se retrouver sous deux formes. Au stade végétatif, le parasite se reproduit dans l’organisme de l’abeille et au stade de spore, une forme passive et infectieuse est responsable de la transmission de la maladie (COLIN et al., 2008).

Selon BAILEY (1954) les abeilles fortement infectées ne peuvent digérer convenablement leur nourriture. Il en résulte une forme de diarrhée chez les abeilles qui vont alors déféquer dans la ruche ou sur le plateau d’envol. Une souillure important de la ruche est observée. Ces souillures renferment plusieurs spores qui deviennent une source de contamination pour les abeilles affairées au nettoyage (BAILEY, 1954). Cette pathologie provoque un affaiblissement des colonies et une augmentation du nombre de butineuses affaiblies qui se traîne par terre, la colonie meurt avec de fortes provisions de miel et de pollen (BAILEY, 1961). (Fig.3).

Figure 3 : *Nosema ceranae* (WINSTON, 1993)

5-1-2-2- Acariose

Les effets pathogènes trouvés chez les abeilles infectées dépendent du nombre de parasite dans la trachée et ils sont attribuables au dommage mécanique et au désordre

BAILEY (1961), montre que le parasitisme réduit la longévité des abeilles ce qui va engendrer une importante perte de production.

5-1-3-Maladies communes au couvain et aux abeilles

Il existe plusieurs maladies à savoir :

5-1-3-1-Mycoses

D’après LE CONT (2004), la mycose est un champignon qui se développe et colonise le couvain, les larves sont blanches ou jaunâtres il séches au fond des cellules.

5-1-3-2-Varroa

Le varroa est un ectoparasite de l’abeille dont il suce l’hémolymphe de l’abeille et lui transmet, par le fait même, plusieurs virus, tels le virus des ailes déformées et le virus paralysie aiguë des abeilles (VIDAL-NAQUET, 2009). Il cause une maladie dite « la varroase » qui va être détaillée dans le chapitre suivant.

Figure 4 : mycose du couvain (WINSTON, 1993)
Chapitre I
Généralité sur l’abeille domestique (*Apis mellifera*)

5-2- Les ennemies de l’abeille domestique

Selon BARBANçon (2002), il existe divers animaux qui peuvent exercer une action néfaste sur les abeilles ; ces principaux animaux sont :

- les oiseaux : comme passériformes qui chassent les abeilles

- les insectes :
 - les fourmis qui attaquent les provisions et dés fois ils s’attaquent même au Couvain
 - La fausse teigne : C’est un ravageur des abeilles qui fait plus de dégâts. Il existe deux espèces de fausse teigne : la grande fausse teigne *Galleria mellonella*, la petite fausse teigne *Achroia grisella* (BRADB EAR, 2010). D’après MARTIRE et ROCHAT (2008), les larves se nourrissent essentiellement de cire, et dans une moindre mesure de pollen. elles creusent des galeries dans la cire, et tissent un réseau de soies pour se protéger des ouvrières (Fig.3). Cela gêne le développement du couvain, que ce soit au niveau de son alimentation par les nourrices ou plus tard au moment de l’éclosion.

Figure 5: Dégâts sur un rayon infesté par la fausse teigne (LE CONTE, 2004).
CHAPITRE II:
Le varroa et son effet sur l’abeille domestique
Le varroa est un ectoparasite qui menace l’abeille domestique, il provoque des pertes économiques importantes en apiculture dans le monde. Aujourd'hui, dans les cinq continents pas un rucher ne lui échappe. La transhumance, les transactions commerciales des colonies et des essaims d'un pays à un autre, font que son extension est devenue mondiale (DE JONG et al., 1982 ; DUVAL et HANLEY, 1995).

1-systématique

Selon ANDERSON et TRUEMAN (2000), le varroa, appartient à la classification suivante :

Embranchement: Arthropoda

Sous-embranchement: Chélicerata

Classe: Arachnida

Ordre: Acari

Sous ordre: Parasitiformes

Famille: Mesostigmata

Sous-famille: Parasitidae

Genre: Varroa

Espèce: V.destructor (OUDEMANS, 1904)

2- La biologie de varroa

2-1- Morphologie de parasite

Dans une alvéole du couvain de l’abeille infestée du varroa on trouve (Fig. 4) :

2-1- 1-Femelle Varroa

La femelle Varroa appelée aussi fondatrice se présente sous forme d’un disque bombé, de couleur brun à brun foncé, mesure 1,1mm de long sur 1,6 mm de large. Elle est formée d'un ensemble de plaque (sclérites) articulées entre elles. De chaque côté s’insère huit pattes, les six pattes postérieures sont recourbées vers l'arrière et servent à la locomotion ainsi qu'à s'agripper à la victime, Les deux pattes avant sont en mouvement constant et ont une fonction sensorielle car le Varroa n'a pas des yeux (CARDINAUX, 1995). Chaque paire de patte se termine par un suceur lui servant à percer le revêtement chitineux de l’abeille et à sucer l’hémolymphe (PROST, 1987).

2-1- 2-Mâle

Le corps du mâle est de forme arrondi de moins de 1 mm de diamètre, il est de couleur grise ou jaune (PROST, 1987). Il se caractérise également par la cuticule qui est beaucoup
moins dure que celle de la femelle ainsi que par la présence de chélicères qui assurent le transport des spermatophores lors de l’accouplement (DONZE, 1998).

2-1-3- Les formes immatures

Tout comme le mâle, les formes immatures du varroa sont aussi rencontrées à l’intérieur des cellules du couvain de l’abeille. Il est distingué généralement trois stades immatures : la larve, la protonymphène et la deutonymphène :

- **La larve** : est le premier stade après l’œuf, elle est enfermée dans la membrane de celui-ci et débute son développement 24h après sa ponte. Elle est inactive et immobile, elle est de forme sphérique et mesure 0.5mm de diamètre.

- **La protonymphène** : elle est de couleur blanche et de forme arrondie. Elle possède quatre paires de pattes tendues vers l’extérieur et vers l’avant. Cette protonymphène se déplace peu et elle est capable de percer la cuticule de la pupe d’abeille et se nourrir de l’hémolymphe grâce au développement de ses chélicères. À ce stade, il est difficile de distinguer le mâle de la femelle.

- **La deutonymphène** : prend l’aspect général propre à son sexe. Les pattes restent rigides et dirigées vers l’avant. Elle se déplace un peu plus que la protonymphène et elle ne s’arrête pas de s’alimenter (ROBAUX, 1986).

![Figure 6](image-url) : Les différents stades de développement du *V. destructor* ROSENKRANZ et al (2010). :

A : Protonymphène, B : deutonymphène mobile, C : deutonymphène immobile,
D: jeune femelle nouvellement émergée, E : femelle adulte (le parasite),
F : mâle adulte.

2-2- Cycle de développement

V. destructor se reproduit dans les cellules du couvain des ouvrières et des faux bourdons (DE JONG et al, 1982; REHM et RITTER, 1989; BOOT al, 1997; BEETSMA et
Chapitre II

Le varroa et ses effets sur l’abeille

alez., 1999). Selon MARTIN (1994), le succès reproducteur de cet acarien sur *A. mellifera* est corrélé avec la durée de l’étape d’operculation de son hôte, qui est plus longue pour les faux bourdons, intermédiaire pour les ouvrières et, courte pour les reines. La femelle fondatrice quitte l’ouvrrière qui la transporte et se glisse sous la larve 20 heures avant l’operculation des cellules chez les ouvrières et 40h chez les faux bourdons (BOOT et *al.*, 1992; INFANTIDIS et ROSENKRANZ, 1988). La femelle passe entre la larve et la paroi de la cellule et progresse jusqu’à la gelée larvaire où elle va s’immerger ce qui lui permet d’être à l’abri des attaques des abeilles (DONZE, 1995 ; INFANTIDIS, 1988).

Il est à rappeler que le premier œuf pondu par la fondatrice, donnera naissance à un mâle et les suivants donneront tous naissance à des femelles (FERNANDEZ et COINEAU, 2002). La ponte, la fécondation et le développement des acariens se produisent avant l’émergence de l’abeille adulte (COLIN et *al.*, 2001).

La durée de développement de l’acarien dans les cellules operculées est de 8 à 13 jours (BOWEN-WALKER et GUNN, 2001). Le mâle fécondera ses sœurs les femelles filles dès qu’elles atteignent le stade adulte et avant l’éclosion de l’abeille, lors de l’éclosion, les femelles s’embarquent sur l’abeille et après une période de transport, elles deviennent elles-mêmes des femelles fondatrices; elles relanceront ainsi le processus de reproduction dans d’autres cellules de couvain (FERNANDEZ et COINEAU, 2002).

3-Symptômes desvarroas

Le parasitisme par *V. destructor* touche les abeilles adultes et le couvain. Ces derniers vont donc, en fonction du taux d’infestation de la colonie, développer des signes cliniques. Les abeilles d’hiver courent le risque de voir leur espérance de vie diminuée : certaines ne vivront pas assez longtemps pour assurer la reprise du cycle au printemps, avec à terme, un risque d’effondrement de la colonie, il est possible aussi observer une diminution du nombre de faux-bourdons.

En effet, les ailes des abeilles adultes sont souvent déformée ou formée qu’en partie et l’abeille perd 25 % de son poids, lorsque plus de 8 acariens sont présents dans une cellule, la pupe meurt (HANLEY et DUVAL, 1995).
DE VAUBLANC (2003) note que le prélèvement de l’hémolymphe entrain des changements qualitatifs et quantitatifs dans le protéinique de l’hémolymphe, dû non seulement à une diminution de protéines, mais aussi à la libération possible de substances toxique dans l’hémoceole de la larve. Sont enregistrés de nombreux effets du parasite sur la morphologie et la physiologie de l’abeille à savoir:

- La diminution de la longueur du corps (DE JONGE al., 1982).
- La réduction du volume des glandes hypopharyngiennes des ouvrières adultes (SCHNEIDER et DRESCHER, 1987).

4- les moyens de lutte contre V. destructor

TROUILLER (1993) confirme que Les apiculteurs disposent de plusieurs moyens de lutte pour limiter la population de V. destructor au sein de leurs colonies.

4-1- La lutte chimique

Regroupant plusieurs molécules à propriétés acaricides, qui sont efficaces cependant de leur utilisation à long terme, présente des dangers, tel que la présence de résidus dans le miel et surtout l’apparition de souches d’acariens résistants aux molécules actives. Les produits chimiques les plus utilisés sont:

4-1-1- APIVAR® (Amitraze)

C’est un insecticide et acaricide utilisé en agriculture et en médecine il est utilisé dans le traitement ou le dépistage du varroa grâce à son efficacité (GUPTAL et al., 2012).

L’APIVAR® se présente sous forme de lanières de copolymères contenait de l’amitraze qu’il faut suspendre entre les cadre et laisser en place est conseillé d’utiliser l’amitraze de 6 semaines. D’après FAUCON et al., (2007), il semble que l’amitraz doit être utilisé le plus tôt possible après la dernière miellée de fin d’été.

4-1-2- APISTAN® (Fluvalinate)

Selon FERNANDEZ et COINEAU (2002), il s’agit d’un cyanopyretrenoï de présentant une faible toxicité pour les abeilles, ce médicament se présente sous forme de lanières en plastique : le principe actif est libéré progressivement et agit par contact (des abeilles avec les lanières puis des abeilles entre elles) sur les varroas phorétiques, deux lanières sont placées dans la ruche (une entre les cadres 3 et 4 et l’autre entre les cadres 7 et 8) et doivent être
Chapitre II

Levarroa et effets sur l’abeille

Laissées en place 6 à 8 semaines, laisser ces lanières plus longtemps favorise l’apparition de résistance.

Dans les années 1990, des cas de résistance du varroa au fluvalinate a été observé ; ce traitement n’a alors plus été conseillé. Cependant, il est préconisé de réaliser une rotation des molécules utilisées.

4-2- La lutte biotechnique

La lutte chimique regroupe plusieurs moyens physiques et apicoles à savoir :

4-2-1- Plateau grillagé

La première mesure mécanique permettant de réduire la progression de la population du Varroa est d’équiper les ruches d’un plateau grillagé, à maillage suffisamment fin pour laisser passer les varroa mais pas les abeilles. En effet, régulièrement des varroas chutent au fond de la ruche. Incapable de regagner la colonie par leurs propres moyens, les acariens restent alors prisonniers au fond de ces plateaux (CHAPLEAU, 2003).

4-2-2- Retrait du couvain de mâle

Cette méthode met à profit l’attraction préférentielle des femelles varroa (fondatrices) envers le couvain de mâle. La méthodologie de base consiste à introduire un cadre du couvain de mâle dans la colonie et le laisser jusqu’à l’operculation. Une fois operculé, il suffit de le retirer et de le détruire. Ce type d’intervention vise à freiner le développement des populations du Varroa au début de la saison apicole et de diminuer ainsi la pression d’infestation au cours de l’été (CHARRIERE et al., 1998).

4-3- Lutte biologique

Consiste à rechercher les moyens de contrôle biologique du varroa par l’utilisation de toxine de bactérie et de virus. Il a été envisagé également le développement de race d’abeilles résistantes au varroa (DUVAL et HANLEY, 1995).

4-3-1- Application des huiles essentielles

La lutte biologique s’intéresse également à l’utilisation des huiles essentielles qui est un nouveau moyen de lutte alternative.
En effet, IMDORF et al. (1999) ont testé l’efficacité de 150 huiles essentielles lors de leur utilisation sur la colonie d’abeilles et ont montré que l’huile de thym était très efficace.

PEGUIN (1987) montre que le traitement avec un mélange à base d’huiles essentielles: d’huile de thym, de sarriette, de lavandin et de cades additionnés de sauge, de menthe et de girofle a donné son efficacité sur le terrain.

4-3-2- Application des acides organiques
D’autres chercheurs se sont intéressés à étudier les effets acaricides de certains acides organiques, naturellement présentes dans le miel.

- **L’acide oxalique** : ou acide éthanedioïque, est présent dans le miel avec une valeur de 10 à 119 mg/kg selon les origines florales. Cette molécule est hydrosoluble et non volatile, elle présente trois modes d’application : dégouttement, pulvérisation (IMDORF et al., 1997 ; CHARRIERE et al., 1998) et évaporation (IMDORF et al., 2003), ou bien par insertion des bandelettes (BOUCHER, 2004). Son efficacité est estimé à 95% et 98% en absence du couvain (BARBANÇON et MONOD, 2005 ; MAHMOOD et al., 2012). Toutefois, ce produit est toxique pour l’homme et demande beaucoup de précaution lors de son application. Il a été également démontré sa toxicité pour l’abeille puisqu’il provoque la chute de la teneur en glucides et en lipides avec une augmentation de taux de protéines dans le corps et l’hémolymphe de l’abeille, ce qui va causer l’affaiblissement des colonies (ADJLANE et al., 2013).

- **L’acide formique** : L’acide formique, ou acide méthanoïque est une molécule hydrophile et très volatile, présente dans les miels entre 17 et 284 mg/kg. Son intérêt réside dans le fait qu’il atteint les varroas à l’intérieur des alvéoles operculées. Néanmoins, un traitement effectué au printemps augmente la concentration du miel en acide formique jusqu’à 417mg/kg. Des résidus d’un tel niveau pouvant modifier le goût du miel (à partir de 300mg/kg), l’utilisation de ce traitement est en conséquence conseillée en hiver (BOGDANOV et al., 2002). D’autre part, l’acide formique présente une forte toxicité pour l’Homme (le port des vêtements et lunettes de protection sont obligatoires) et entraîne également une perte d’abeilles de 5% ou plus lors de son utilisation (HANLEY et DUVAL, 1995).
CHAPITRE III:
MATERIELS
ET
METHODES
Chapitre III matérielle et méthode

L’objectif de notre travail est la lutte biologique contre varroa en testant au laboratoire l’effet acaricide de deux huiles essentielles à savoir l’huile de lentisque et celle de myrte.

Pour se faire, notre étude est répartie en deux parties :

- Échantillonnage du couvain operculé sur lequel on va prélever des nymphes d’abeilles et du varroa.

- Détermination, au laboratoire, de l’effet des huiles suscitée sur l’abeille et sur le varroa.

1-Présentation du milieu d’étude

1-1-situation géographie

L’échantillonnage a été effectué au niveau d’un rucher privé qui se trouve dans le village Ighzar Bais sis à Azib Ahmed situé à environ 2 km de la ville de Tizi-Ouzou (Fig. 9).

Figure 7 : Position géographique du site d’échantillonnage (Google earth 2017).

1-2-climat

Des modifications climatiques peuvent altérer l’activité des colonies d’abeilles domestiques. Les basses températures, les périodes de pluies ou de vents violents entraînent
des confinements et ont des influences directes néfastes sur le couvain (DUSTMANN et VON DER OHE, 1988).

1-3- La pluviométrie

La pluviométrie constitue un facteur écologique d’importance fondamentale pour le fonctionnement et la répartition des écosystèmes (RAMAD, 1984). Elle influence importante sur le biologie des espèces végétales et animales, par ailleurs, elle agit sur la vitesse de développement des animaux, sur leur longévité et leur fécondité (DAJOZ, 1971). Les précipitations mensuelles enregistrées durant la période de notre étude expérimentale sont portées dans la (fig. 16 et Annexe 1):

![Graphique des précipitations mensuelles](image)

Figure 8: Les précipitations mensuelles moyennes de la wilaya de Tizi-Ouzou de juin 2016 à juin 2017 (OMN de Boukhalfa).

Pendant la période de notre étude, la valeur moyenne mensuelle des précipitations la plus importante est enregistrée pendant le mois d’avril avec 37 mm, et la valeur mensuelle des précipitations la plus faible est enregistrée pendant le mois de mai avec 2,1 mm.

1-4- Les Températures

Les températures mensuelles moyennes, maximales et minimales enregistrées durant la période de notre étude expérimentale sont représentées dans la figure et annexe 2. Nous constatons que les températures commencent à s’élever partant de janvier pour atteindre un pic de 26.4°C en juin et enregistrer un pic de 26.4°C en juin.
Figure 9: Les températures mensuelles relevées dans la région de Tizi-Ouzou de juin 2016 à juin 2017 (ONMBoukhalfa)

2- Matériel

2-1- Matériel utilisé au laboratoire

2-1-1- Matériel utilisé pour le prélèvement du varroa (fig.8)

- La loupe : utilisée pour distinguer le varroa adulte des formes immatures.
- Pince : utilisée pour le prélèvement des nymphes d’abeille et le varroa.
- Boîtes de pétri : utilisée pour collecter le varroa prélevé des nymphes.

Figure 10 : Matériel utilisé pour le prélèvement du varroa (Photo originale) :

a- la loupe binoculaire G : x40, b- boîtes de pétri.
2-1-2- Matériel utilisé pour la détermination de l’effet acaricide des huiles essentielles (Fig. 9)

- Bocaux en plastique : de 0.5 litre
- Cagettes en verre
- Papierfiltre
- Micropipettes : de 0.1 à 1 µl pour le pipetage des huiles
- Le matériel biologique : l’abeille locale *Apis mellifera intermissa* et son parasite *Varroa destructor*.
- Les huiles essentielles : deux huiles ont été testées qui sont myrte et lentisque.

Figure 11 : Matériel utilisé pour le test des huiles (Photo originale) : a- Cagettes en verre ; b- bocaux plastique c- les huiles essentielles ; d- micropipettes

- Les huiles essentielles testées dans notre étude sont issue de plantes suivantes:

 ❖ Les huiles essentielles testées dans notre étude sont issue de plantes suivantes:
Chapitre III
matérielle et méthode

- **Myrte (Myrtus communis)** : Le myrte est une plante de la famille des myrtacées. Il est répandu dans les régions méditerranéennes où il sert à la confection de diverses liqueurs. C’est un petit arbuste riche en huile essentielle aux propriétés et usages divers et variés. A Feuille opposée, fleurs blanches et fruits petites baies pourpres-noires (Fig.14).

 L’huile essentielle de myrte est obtenue par hydro distillation des rameaux fraichement taillés.

![Image de Myrte](image1.png)

Figure 12 : Myrtus communis (ALEKSIC et KNEZEVIC. 2013).

- **Lentisque (Pistacia lentiscus)** : est un arbuste poussant dans les garrigues et les maquis des climats méditerranéens. Plante de la famille des Anacardiaceae, à feuillage persistant, elle donne des fruits, d'abord rouges, puis noirs, pouvant atteindre trois mètres, c'est parfois aussi un arbuste ne dépassant pas six mètres(Fig.15).

 L’huile est extraite de la partie fruit de cette plantes. Il faut la récolte des graines ou la période de la récolte varie de décembre à janvier, Le mûrissement des fruits est plus précoce dans les zones ensoleillées. Les fruits cueillis à la main sont portés à ébullition dans de l'eau pendant une demi-heure environ. Ils sont ensuite placés dans un sac de jute qu'un homme piétine pour extraire le jus. À la surface de celui-ci surnage l'huile recherchée, de couleur verte.

 L’huile essentielle de lentisque est obtenue par hydro distillation des rameaux fraichement taillés.
2-2- Matériel utilisé sur le terrain

Pour toutes les études sur le terrain nous avons utilisé :

- **Les ruches** : de type Langstroth comprenant 10 cadres avec cire. Chaque ruche est composé d’un plateau grillagé, hausse, couvre cadres etcouvercle.

- **Les plateaux grillagés** : utilisés pour piéger les parasites tombés. Chaque plateau est constitué d’une grille métallique à maille fine (4-5 mm) qui recouvre le lange déposé sur la surface du plancher de chaque ruche. Ils servent à recueillir les *Varroa* qui tombent et empêchent l’accès des abeilles pour les nettoyer.

- **Enfumoir** : est un outil métallique muni d’un soufflet et d’un couvercle sous forme d’entonnoir. Il est indispensable pour la manipulation des colonies car la fumée qu’il dégage calme et adoucit les abeilles.

- **Une combinaison et une paire de gants** afin de se protéger des piqûres d’abeilles.

- **Un lève cadres** : c’est une barre en fer qui sert à décoller les cadres de la ruche que les abeilles ont soudé avec de la lapropolis.

- **Le matériel biologique** : constitué de l’abeille domestique locale *Apis melliferaintermissa*.

- **Les traitements** : les traitements testés sur le terrain sont :

 - L’huile essentielle de Lentisque: Précédemment décrite.
 - **Apistan®** : un acaricide chimique dont la molécule active est la fluvalinate. Son mode d’application consiste à mettre deux lanières par ruche pendant 6 semaines.
Chapitre III matérielle et méthode

✓ **Apivar®** : c’est un acaricide chimique qui se présente sous forme de lanières en plastique. Il est utilisé comme traitement de contrôle afin de pouvoir déterminer l’efficacité des traitements utilisés.

3-Méthode

3-1- **Méthode d’échantillonnage du couvain et des abeilles** :

 Après avoir bien enfumée, nous avons ouvert la ruche et avons sélectionné un cadre ayant une bonne surface du couvain operculé. A l’aide d’une lame, un échantillon d’environ 100 cellules est coupé et mis dans une boîte. L’opération est répétée sur d’autres ruches afin d’avoir un bon nombre d’échantillon du couvain qui nous permettra de prélever le maximum duvarroa.

 D’autres parts, après avoir localisé la reine afin d’éviter de la perdre au moment de l’échantillonnage, nous avons prélevé un à trois cadres pleins d’abeilles que nous avons secoué dans une ruchette. Une fois que les abeilles se sont calmées, un échantillon de 50 à 80 abeilles est retiré et déposé dans chaque bocal.

3-2- **Méthode d’échantillonnage du varroa**

 Au laboratoire, et sous la loupe binoculaire l’échantillon du couvain operculé est ouvert à l’aide d’une pince entomologique. Les varroas qui sont présents soit dans l’alvéole ou coller sur la nymphe d’abeille sont retirés et déposés dans des bocaux en plastique.

3-3- **Méthode utilisée pour tester l’effet des huiles essentielles au laboratoire**

3-3-1- **Méthode utilisé pour tester l’effet des huiles essentielles sur varroa**

 Pour les deux huiles essentielles (myrte et lentisque) nous avons suivi les étapes suivantes (fig.12):

 a) Préparation des bocaux : pour chaque huile, nous avons utilisé des bocaux en plastique de 0,5l de volume, dans lesquels nous avons suspendu du papier filtre à l’aide d’un fil de 5 cm à la face interne du couvercle.

 b) Dans chaque bocal, nous avons placé 10 varroa puis nous avons imprégné le papier filtre d’une dose d’huile (0,2, 0,5, 0,7 et 1 ul)

 c) Pour chaque dose, nous avons varié la durée d’exposition : 5 min, 1h, 15h et 24h et nous avons réalisé quatre répétitions pour chacune (y compris le témoin qui est sans traitement).
Chapitre III

d) Pour chaque durée, nous avons dénombré le varroa mort sous l’effet de chaque huile et de chaque dose et la même chose pour toutes les répétitions.

Figure 14 : Les différentes étapes du test sur varroa (photo originale).

3-3-2-Méthode utilisée pour tester l’effet des huiles sur l’abeille au laboratoire

a) Dans chaque cagette en verre, nous avons mis environ 50 à 70 abeilles. Du papier filtre est suspendu à l’aide d’un fil à la face interne du couvercle puis nous l’avons imprégné d’une dose d’huile (0.2, 0.5, 0.7 et 1 µl). A noter que dans chaque cagette nous avons mis un peu de sucre pour nourrir les abeilles.

b) Pour chaque dose, nous avons réalisé quatre répétitions et nous avons varié la durée d’exposition (1h, 12h, 24h et 48h).

c) Pour chaque durée d’exposition et chaque répétitions, nous avons dénombré le nombre d’abeilles mortes sous l’effet de chaque huile et chaque dose.
3-4- Méthode utilisée pour le traitement des colonies d’abeilles sur le terrain

Nous avons utilisé quinze ruches (15), réparties au hasard en 03 lots de 05 ruches chacun. Chaque ruche est équipée d’un plateau grillagé pour récolter le varroa mort. Le lot A et B sont traités respectivement avec l’huile essentielle de lentisco un traitement chimique "Apistan®" alors que le C est sans traitement (Tab.1):

Tableau 1 :Répartition des lots.

<table>
<thead>
<tr>
<th>Lot</th>
<th>Traitement</th>
<th>N° des Ruches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Lentisque</td>
<td>1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>B</td>
<td>Apistan®</td>
<td>6, 7, 8, 9, 10</td>
</tr>
<tr>
<td>C</td>
<td>Témoin</td>
<td>11, 12, 13, 14, 15</td>
</tr>
</tbody>
</table>

- **Lot A** : dans chaque ruche, nous avons introduit deux lanières en tissu de 4 x 3 cm protégées par une toile grillagée (afin d’éviter le nettoyage par les ouvrières). Chaque lanière imbibée de l’huile essentielle de lentisco est suspendue entre les cadres de couvain pour une durée de trois semaines. Celle-ci sera retirée et remplacée par deux autres lanières de la même dose (pour une deuxième application) pour une durée de trois semaines également (Fig.13).

- **Lot B** : dans chaque ruche, nous avons introduit deux lanières d’Apistan® réparties entre les cadres du couvain pour une durée de six semaines.

- **Lot C** : c’est un lot témoin. Les ruches sont restées sans traitement.

3-5- Méthode utilisée pour le traitement de contrôle

- Le traitement de contrôle a pour but de vérifier l’efficacité des traitements précédemment utilisés. Pour notre expérimentation, nous avons utilisé le Apivar®, produit disponible sur le marché et qui a déjà démontré son efficacité.

- Après six semaines de traitement, nous retirons pour chaque lot traité les lanières de traitement employé que nous remplacerons par deux lanières d’Apivar®. Le traitement a duré six semaines et le dénombrement des varroas morts est effectué chaque semaine (fig.13).

- Le lot C est resté toujours sans traitement et la chute du varroa a été également notée.
3-6- Analyse statistique

L’ensemble des résultats obtenus durant notre étude ont fait l’objet d’une analyse statistique qui est une analyse de la variance (Anova) à deux critères de classification, au risque d’erreur 5%.

Figure 15 : Traitement des colonies: a- Introduction des lanières d’Apivar®; b- à l’huile essentielle (Photo originale).
CHAPITRE IV:
RESULTATS ET DISCUSSION
1- Détermination de l’huile et la dose efficace aulaboratoire

1-1- Effet des huiles sur le varroa

L’effet des huiles essentielles sur le varroa est rapporté dans la figure 17, annexe 3. Nous remarquons qu’à la dose 0,5µl, 0,7µl et 1µl, les huiles essentielles de myrte et de lentisque causent une mortalité totale du varroa. Alors qu’au niveau de lot témoin nous n’avons enregistré aucune mortalité.

![Figure 16](image.png)

Figure 16 : Mortalité du varroa selon le type d’huile et la dose.

Afin de déterminer l’huile et la dose efficace pour lutter contre le varroa et qui n’aurapass’effet sur les abeilles, nous avons soumis nos résultats à une analyse de la variance àdeux facteurs de classifications. Cette analyse indique une différence hautement significative pour le facteur dose (F=36.149, P=0.0000), non significative pour le facteur huile (F=4.261, P=0.01575) et hautement significative pour leur interaction (F= 5.923, P=0.00002) (annexe5).

Pour le traitement des huiles essentielles de lentisque et de myrte contre le varroa, le test de NEWMAN et KEULS, au seuil de 5%, classe les moyennes obtenues pour le facteur huile et facteur dose en plusieurs groupes homogènes (Tab.2).

<table>
<thead>
<tr>
<th></th>
<th>LIBELLES</th>
<th>MOYENNES</th>
<th>GROUPES HOMOGENES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td>0,2</td>
<td>2,44±1,22</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>0,5</td>
<td>2,48±1,12</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>0,7</td>
<td>1,79±0,48</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0,60±0,35</td>
<td>C</td>
</tr>
<tr>
<td>Huile essentielle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>myrte</td>
<td></td>
<td>2,02±0,76</td>
<td>A</td>
</tr>
<tr>
<td>Lentisque</td>
<td></td>
<td>1,94±1,11</td>
<td>A</td>
</tr>
<tr>
<td>témoin</td>
<td></td>
<td>1,53±0,70</td>
<td>B</td>
</tr>
</tbody>
</table>

1-2- Effet des huiles sur les abeilles

L’effet des huiles essentielles sur les abeilles est représenté par la figure 18 et annexe 4.

Nous remarquons qu’à la dose de 0.2µl et 0.5µl, l’huile essentielle de lentisque ne cause aucune mortalité des abeilles. Par contre, aux doses 0.7µl et 1µl, l’huile de myrte provoquent respectivement une mortalité de 18.63% et 37.98%. Alors qu’avec l’huile de lentisque, nous enregistrons une mortalité d’abeilles de 4.91% pour la dose de 0.7µl et 18,06% pour la dose de 1µl.

Figure 17 : Mortalité des abeilles selon le type d’huile et la dose.
Afin de déterminer l’effet des deux huiles essentielles (lentisque et myrte) sur les abeilles, nous avons soumis nos résultats à une analyse de la variance à deux facteurs de classifications. Cette analyse indique une différence hautement significative pour le facteur dose (F=25.753, P=0.0000), et pour le facteur huile (F=5.252, P=0.00642) hautement significative pour leur interaction (F= 13.435, P=0.00002) (annexe 5).

Pour l’effet des huiles essentielles de lentisque et de myrte sur varroa, le test de NEWMAN et KEULS, au seuil de 5%, classe les moyennes obtenues pour le facteur huile et facteur dose en plusieurs groupes homogènes (TAB. 3).

Tableau 3: Résultats du test de Newman et Keuls concernant l’influence des huiles essentielles et la dose sur la mortalité des abeilles

<table>
<thead>
<tr>
<th>Facteur</th>
<th>LIBELLES</th>
<th>MOYENNES</th>
<th>GROUPES HOMOGENES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,2</td>
<td>1,229±5,044</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>0,5</td>
<td>2,417±2,401</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>0,7</td>
<td>5,833±2,189</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,00±0,00</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Huile essentielle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYRTE</td>
<td>3,406±3,276</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>LENTISQUE</td>
<td>2,25±3,436</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>TEMOIN</td>
<td>1,453±2,079</td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>

2-Étude de l’efficacité des deux huiles sur le terrain

À base de ces résultats, nous avons opté de tester sur le terrain l’huile essentielle de lentisque. Pour la dose, nous avons choisi la valeur de 0,2µl qui a provoqué moins de mortalité d’abeilles. Cette valeur est bien sûr convertie par rapport au volume de la ruche. Après une simple règle de trois, nous déduisons que la dose à appliquer sur le terrain est de 7µl.

2-1 Traitement du lot A par l’huile essentielle de lentisque

2-1-1- Evolution de la mortalité du *Varroa* dans le lot A

Le comptage de la chute naturelle du *Varroa*, avant le traitement, donne une mortalité moyenne équivalente entre 55,20 et 89,80 *Varroa*. Après la première application...
l’huile de lentisque, la mortalité moyenne du parasite s’élève à 315,80 Varroa pour diminuer jusqu’à 36,80. A la fin de la deuxième application de l’huile, le nombre moyen du Varroa mort diminue jusqu’à 35,25. A la première semaine du traitement de contrôle (Apistan®), nous enregistrons une légère augmentation de mortalité du parasite qui atteint 95,40 Varroa. Par la suite, la chute diminue et devient très faible à la fin de traitement avec une mortalité moyenne de 2,40 Varroa (Fig.19 et annexe6).

Figure 18 : Evolution de la mortalité moyenne du Varroa pendant le traitement à l’huile de lentisque et le traitement de contrôle.

1. Première application de l’huile de lentisque (7µl) : le 30/06/2017
2. Deuxième application de l’huile de lentisque (7µl) : le 21/07/2017
3. Application de l’Apistan (traitement de contrôle) : le 11/08/2017

3-1-2- Efficacité de l’huile de lentisque

La mortalité du Varroa dans les colonies étudiées ainsi que le taux d’efficacité du traitement testé sont rapportés dans le tableau 5. L’application de l’huile de lentisque enregistre un taux d’efficacité moyen de 74,30 Varroa. En effet, nous constatons une mortalité importante lors de traitement avec cette huile par rapport au traitement de contrôle.
Tableau 5 : Détermination de l’efficacité de l’huile essentielle de lentisque.

<table>
<thead>
<tr>
<th>N° Ruche</th>
<th>Nombre de varroa mort Pendant le traitement Avec lentisque (A)</th>
<th>Nombre total du Varroa morts (A+B)</th>
<th>Efficacité de l’huile de Lentisque(%) A/(A+B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>600</td>
<td>199</td>
<td>799</td>
</tr>
<tr>
<td>2</td>
<td>565</td>
<td>216</td>
<td>781</td>
</tr>
<tr>
<td>3</td>
<td>591</td>
<td>204</td>
<td>795</td>
</tr>
<tr>
<td>4</td>
<td>1195</td>
<td>239</td>
<td>1434</td>
</tr>
<tr>
<td>5</td>
<td>817</td>
<td>414</td>
<td>1231</td>
</tr>
</tbody>
</table>

Moyenne ± Ecart type = 74,30 ±6,10

2-2- Traitement du lot B par le traitement chimique Apistan®

2-2-1- Evolution de la mortalité du Varroa dans le lot B

Le comptage de la chute naturelle du Varroa, avant le traitement, donne une mortalité moyenne de 50 Varroa. À l’application de l’Apistan®, la mortalité moyenne du parasite s’élève à 349 Varroa pour diminuer jusqu’à 0.2varroa. Avec le traitement de contrôle apivar®, nous enregistrons une légère augmentation de mortalité du parasite qui atteint 140 Varroa. Par la suite, la chute diminue et devient très faible à la fin de traitement avec une mortalité moyenne de 0.00 Varroa (Fig.20 et annexe8).
Chapitre IV

Résultatetdiscussion

1. Début de traitement avec Apistan® : le 30/06/2017

2. Application d’Apivar® (traitement de contrôle) : le 11/08/2017

3-2-2- Efficacité de Apistan®

La mortalité du varroa dans les colonies étudiées ainsi que le taux d’efficacité du traitement testé sont rapportés dans le tableau 6. L’application de traitement chimique Apistan®l n’a pas pu éliminer tous les varroas existants dans les ruches. Ainsi, nous enregistrons un taux d’efficacité moyen de 75.41 varroas.

Tableau 6 : Détermination de l’efficacité de Apistan®

<table>
<thead>
<tr>
<th>N° Ruche</th>
<th>Nombre de varroa mort Pendant le traitement Apistan (A)</th>
<th>Nombre de varroa mort Pendant le traitement de contrôle (Apivar) (B)</th>
<th>Nombre total du Varroa morts (A+B)</th>
<th>Efficacité de l’huile de Lentisque(%) A/(A+B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>535</td>
<td>215</td>
<td>750</td>
<td>71,33</td>
</tr>
<tr>
<td>2</td>
<td>646</td>
<td>102</td>
<td>748</td>
<td>86,36</td>
</tr>
<tr>
<td>3</td>
<td>531</td>
<td>225</td>
<td>756</td>
<td>70,24</td>
</tr>
<tr>
<td>4</td>
<td>728</td>
<td>190</td>
<td>918</td>
<td>79,30</td>
</tr>
<tr>
<td>5</td>
<td>529</td>
<td>229</td>
<td>758</td>
<td>69,79</td>
</tr>
</tbody>
</table>

Moyenne ± Ecart type = 75,41 ±7,25

3-3- Le lot C (témoin) sans traitement

3-5-1- Evolution de la mortalité du Varroa dans le lot C

Au niveau du témoin, la mortalité moyenne du varroa diminue considérablement durant la première semaine du mois de juin est de 78 varroas Puis, elle élevée jusqu’à enregistrer une mortalité moyenne de 125 individus vers le début du mois de juillet. Au milieu decemois,lenombre moyenduparasitemortvadiminueà26.Puis,elleélevéeaudébutde
mois de aoute jusqu’à enregistrer une mortalité moyenne de 225 de mortalité (Fig. 21 et annexe 9).

Figure 20 : Evolution de la mortalité moyenne du Varroa au niveau du lot C.

3.6. Analyse comparative de l’efficacité des deux traitements.

La comparaison des moyennes élaborée entre traitement de contrôle l’Apistan et l’huile de lentisque est presque identique nous avons enregistrer une mortalité moyennede 75.41 et 74.30 respectivement.

Tableau 7: Résultats comparative concernant l’efficacité des trois traitements

<table>
<thead>
<tr>
<th>Traitement</th>
<th>Moyennes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apistan</td>
<td>75,41</td>
</tr>
<tr>
<td>LENTISQUE</td>
<td>74,30</td>
</tr>
</tbody>
</table>
Evaluation de l’effet acaricide des huiles essentielles

Le choix de l’huile essentielle de lentisque comme traitement contre les varroas s’est fait au laboratoire, en testant sur le varroa et sur l’abeille l’effet de deux huiles essentielles (lentisque et myrte) à différentes doses.

En effet, nous avons étudié au laboratoire l’effet de deux huiles essentielles sur l’abeille et sur son parasite (varroa). Les résultats obtenus montrent que l’huile essentielle de myrte et de lentisque provoquent 100% de mortalité du parasite à la dose 0.5µl, 0.7µl et 1µl et une mortalité de 92.5% et 97.50% à la dose de 0.2µl pour l’huile de lentisque et de myrte respectivement. D’autre part, les abeilles sont très sensibles à l’huile de myrte puisqu’à la dose de 0.2µl, nous avons enregistré une mortalité d’abeilles de 9.09% ; cette mortalité va être encore plus importante à la dose de 1µl et qui de l’ordre de 37.89% . Par contre, avec l’huile de lentisque et à la dose de 0.2µl et 0.5µl, les abeilles semblent plus résistantes aux composés de cette huile, puisque nous n’avons enregistré aucune mortalité.

Il ressort des résultats obtenus sur le terrain qu’il n’y a pas de différence significative entre l’efficacité de traitement naturelle et de traitement chimique. En effet l’huile de lentisque appliquée en deux applications présente une efficacité de l’ordre de 74.30% et l’efficacité de traitement chimique Apistan® est de 75.41%.

Cependant, nous avons constaté une forte mortalité dès l’application de l’huile de lentisque mais qui va baisser par la suite. Cela peut s’expliquer par la sensibilité du varroa à l’odeur de cette huile qui par l’effet des températures élevées (lors de traitement) va s’évaporer.

Selon KOTWAL et al. (2013), les huiles essentielles présentent une efficacité variable selon les molécules, leur association et les dosages utilisés. Néanmoins leur utilisation en combinaison avec plusieurs huiles essentielles et d’autres principes actifs pourrait fournir des solutions dans la gestion de la lutte contre *V. destructor* et ses souches résistantes.

Pour l’effet de l’Apistan®, nos résultats se rapprochent de ceux d’ADJLANE (2003) et de ceux de KOUMAD (2011) qui ont enregistré respectivement une efficacité moyenne de 74,23% et 80%. Ces mêmes auteurs supposent une probable apparition du phénomène de résistance car ces résultats sont loin de l’efficacité tracée pour ce produit qui est de 99 ,5% (FAUCON *et al.*, 2007).
Au niveau du lot témoin, bien que les colonies que constituent ce lot n’aient pas été traitées, nous avons constaté une mortalité du *Varroa* même s’elle n’est pas très importante. Cela peut s’expliquer par le fait que chaque colonie est en effet infestée à son niveau suivant les facteurs de tolérance et résistance qui lui sont propres (FREY et al., 2011). La différence de l’infestation des colonies peut être due au fait que les ouvrières manifestent beaucoup plus le comportement d’épouillage que celles des autres colonies.
CONCLUSION
Ce présent travail est effectué dans le but de voir l’effet des huiles essentielles lentisque et myrte sur l’acarien ectoparasite de l’abeille «Varroa destructor». L’étude a été menée sur l’impact de Varroa destructor sur Apis mellifera a révélé que cet ectoparasite provoque des modifications morphologiques considérables pour les abeilles.

Au terme de notre expérimentation, nous déterminent l’effet acaricide de deux huiles essentielle myrte et lentisque contre ce parasite et même l’effet secondaire sur l’abeille.

A partir de nous résultat de test au laboratoire des deux huiles essentielles afin de déterminer l’huile et la dose efficace on conclut des résultats obtenus que les deux huiles causent de mortalité de parasite à la dose 0.2 ou l’effet de cette dose sur les abeilles est nulle (0%).

La comparaison entre l’efficacité de deux huiles distingue que l’huiles de myrte et plus efficace que lentisque et sa due à plusieurs perspective de résistance et la puissance de l’odeur de chaque huile sur l’abeille et leur parasite.

Les résultats de notre expérimentation restent favorables et pour raison d’être améliorer dans le futur, en effet la lutte contre V.destructor par la lutte biologique (naturelle) reste toujours faible devant la lutte chimique mais si meilleure lutte pour effet positive sur la santé de l’abeille et leur produit reste naturel. Donc les recherche doivent se poursuivre en raison de mettre en place des meilleurs stratégies de lutte qui sera le moins couteuse et peut être tue cette maladie parasitaire et obtenir des produites de ruchesains.

Enfin les chercheurs essayer toujours à la recherche des meilleure moyenne efficace, qui donne des bons résultats efficace, naturelle et avec la capacité de nous moyenne.
REFERENCES

BIBLIOGRAPHIQUES

BELAID M ; 2011 effet du parasitisme par Varroa destructor sur les paramètre morphométrique et physiologique de l’abeille ouvrière, Apis mellifera L .dans la région médio-septentrionale d’algérie .thèse de doctorat en science agronomiqueINA El harrach 190p
Références bibliographique

Biesmeijer J.C., Roberts S.P.M., Reemer M., Ohlemüller R., Edwards M., Peeters T

DE JONG, D, DE JONG, P, GONCALVES L S1982: weight lost and another damage to developing worker honeybees (Apis mellifera) due to infestation with Varroa destructor. Japi Res 21, 165-167

Références bibliographique

HABBI ; 2015 –étude de la population du parasite varroa destructor de l’abeille domestique et évaluation de l’efficacité de quelque huiles essentielles dans la lutte contre ce parasite, p : 74.

HANLEYALEXANDER ET JEAN DUVAL, FEVRIER 1995 ;Agro-bio-370-08 les varroas des abeilles.

INFANTIDIS M.D., 1988. Some aspects of the process of Varroa jacobsoni mite entrance into honeybee (Apis mellifera) brood cells.

LE CONTE, MARC ÉDOUARD COLIN, MICHAËL TREILLES, DIDIER CRAUSER ET ALAIN ,1999 ; Paris INRA, Unité de Zoologie et Apidologie, Domaine Saint-Paul, Site Agroparc, 84149 Avignon Cedex 9.

Références bibliographique

ANNEXES
Annexe 1 : Les précipitations mensuelles moyennes de la wilaya de tizi-ouzoue juin 2016 a juin 2017(OMN de boukhalfa)

<table>
<thead>
<tr>
<th>mois</th>
<th>Juin</th>
<th>Juil</th>
<th>Aou</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Janvier</th>
<th>Février</th>
<th>Mars</th>
<th>Avril</th>
<th>Mai</th>
<th>Juin</th>
</tr>
</thead>
<tbody>
<tr>
<td>précipitation</td>
<td>5,9</td>
<td>0,0</td>
<td>4,2</td>
<td>16,6</td>
<td>68,4</td>
<td>150,1</td>
<td>250</td>
<td>36</td>
<td>37,6</td>
<td>23,5</td>
<td>29</td>
<td>37</td>
<td>2,1</td>
<td>8,8</td>
<td></td>
</tr>
</tbody>
</table>

Annexe 2 : répartition des températures moyennes de la wilaya de Tizi-Ouzou de Juin 2016 a juin 2017 (OMN de Boukhalfa).

<table>
<thead>
<tr>
<th>mois</th>
<th>Précipitations en mm</th>
<th>Température maximale en °C</th>
<th>Température minimale en °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janv</td>
<td>9,3</td>
<td>12,6</td>
<td>9,9</td>
</tr>
<tr>
<td>Févr</td>
<td>8,5</td>
<td>12,7</td>
<td>8,6</td>
</tr>
<tr>
<td>Mars</td>
<td>8,8</td>
<td>14,5</td>
<td>8,1</td>
</tr>
<tr>
<td>Avril</td>
<td>10,5</td>
<td>16,4</td>
<td>10,5</td>
</tr>
<tr>
<td>Mai</td>
<td>15,2</td>
<td>21,8</td>
<td>16,4</td>
</tr>
<tr>
<td>Juin</td>
<td>19,8</td>
<td>26,4</td>
<td>19,8</td>
</tr>
</tbody>
</table>

Annexe 3 : nombre de mortalité des varroas selon la dose en quatre répétitions

<table>
<thead>
<tr>
<th>huile essentielle</th>
<th>1ère Répétition</th>
<th>2ème Répétition</th>
<th>3ème Répétition</th>
<th>4ème Répétition</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosag (en µl)</td>
<td>varroa mors</td>
<td>Mortalit (en %)</td>
<td>varroa mors</td>
<td>Mortalit (en %)</td>
</tr>
<tr>
<td>Lentisqu e</td>
<td>0,2</td>
<td>10</td>
<td>9</td>
<td>90,0</td>
</tr>
<tr>
<td>Myrte</td>
<td>0,2</td>
<td>10</td>
<td>10</td>
<td>100,0</td>
</tr>
<tr>
<td>Témoin</td>
<td>0,2</td>
<td>10</td>
<td>10</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Annexe 4 : nombre de mortalité des varroas selon la dose en quatre répétitions

<table>
<thead>
<tr>
<th>huile essentielle</th>
<th>1ère application</th>
<th>2ème application</th>
<th>3ème application</th>
<th>4ème application</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosag (en µl)</td>
<td>N</td>
<td>abeilles mortes</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Lentisqu e</td>
<td>0,2</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Myrte</td>
<td>0,2</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Témoin</td>
<td>0,2</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Annexe 5 : détermination de l’huile efficace contre varroa.

<table>
<thead>
<tr>
<th>dose</th>
<th>Lentisque</th>
<th>Myrte</th>
<th>Témoin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,2</td>
<td>92,50</td>
<td>97,50</td>
<td>0,00</td>
</tr>
<tr>
<td>0,5</td>
<td>100,00</td>
<td>100,00</td>
<td>0,00</td>
</tr>
<tr>
<td>0,7</td>
<td>100,00</td>
<td>100,00</td>
<td>0,00</td>
</tr>
<tr>
<td>1</td>
<td>100,00</td>
<td>100,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Annexe 6 : détermination de l’huile efficace contre l’abeille.

<table>
<thead>
<tr>
<th>dose</th>
<th>Lentisque</th>
<th>Myrte</th>
<th>Témoin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,2</td>
<td>0,00</td>
<td>9,09</td>
<td>0,00</td>
</tr>
<tr>
<td>0,5</td>
<td>0,00</td>
<td>10,71</td>
<td>0,00</td>
</tr>
<tr>
<td>0,7</td>
<td>4,91</td>
<td>18,63</td>
<td>0,00</td>
</tr>
<tr>
<td>1</td>
<td>18,06</td>
<td>37,98</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Annexe 7 : Analyse de la variance ou anova pour les facteurs huile et dose avec interactions sur la mortalité des abeilles.

<table>
<thead>
<tr>
<th></th>
<th>S.C.E</th>
<th>DDL</th>
<th>C.M.</th>
<th>TEST F</th>
<th>PROBA</th>
<th>E.T.</th>
<th>C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR. TOTALE</td>
<td>4488,745</td>
<td>191</td>
<td>23,501</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR. Dose</td>
<td>907,933</td>
<td>3</td>
<td>302,644</td>
<td>25,753</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR. Huile</td>
<td>123,449</td>
<td>2</td>
<td>61,724</td>
<td>5,252</td>
<td>0,00642</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR. INTER. Dose*Huile</td>
<td>947,301</td>
<td>6</td>
<td>157,884</td>
<td>13,435</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Annexe 8 : Evolution de la mortalité moyenne du Varroa durant le traitement Apistan® et le traitement de contrôle.

<table>
<thead>
<tr>
<th>traitement</th>
<th>Date</th>
<th>Varroa mort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortalité</td>
<td>11/06/2017</td>
<td>79,80</td>
</tr>
<tr>
<td>naturelle</td>
<td>18/06/2017</td>
<td>55,20</td>
</tr>
<tr>
<td>1ère application</td>
<td>25/06/2017</td>
<td>83,60</td>
</tr>
<tr>
<td>H.E lentisque</td>
<td>30/06/2017</td>
<td>315,80</td>
</tr>
<tr>
<td>2ème application</td>
<td>07/07/2017</td>
<td>87,80</td>
</tr>
<tr>
<td>1ère traitement</td>
<td>14/07/2017</td>
<td>36,80</td>
</tr>
<tr>
<td>2ème contrôle</td>
<td>21/07/2017</td>
<td>196,00</td>
</tr>
<tr>
<td>Apivar</td>
<td>28/07/2017</td>
<td>82,00</td>
</tr>
<tr>
<td>04/08/2017</td>
<td>35,25</td>
<td></td>
</tr>
<tr>
<td>11/08/2017</td>
<td>195,40</td>
<td></td>
</tr>
<tr>
<td>18/08/2017</td>
<td>28,80</td>
<td></td>
</tr>
<tr>
<td>25/08/2017</td>
<td>13,80</td>
<td></td>
</tr>
<tr>
<td>01/09/2017</td>
<td>11,00</td>
<td></td>
</tr>
<tr>
<td>08/09/2017</td>
<td>3,00</td>
<td></td>
</tr>
<tr>
<td>15/09/2017</td>
<td>2,40</td>
<td></td>
</tr>
</tbody>
</table>

Annexe 9 : Evolution de la mortalité moyenne du Varroa au niveau du lot C.

<table>
<thead>
<tr>
<th>traitement</th>
<th>Date</th>
<th>Varroa mort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortalité</td>
<td>11/06/2017</td>
<td>45,00</td>
</tr>
<tr>
<td>naturelle</td>
<td>18/06/2017</td>
<td>139,40</td>
</tr>
<tr>
<td>1ère traitement</td>
<td>25/06/2017</td>
<td>46,00</td>
</tr>
<tr>
<td>2ème traitement</td>
<td>30/06/2017</td>
<td>335,00</td>
</tr>
<tr>
<td>2ème contrôle</td>
<td>07/07/2017</td>
<td>121,40</td>
</tr>
<tr>
<td>Apistan</td>
<td>14/07/2017</td>
<td>71,00</td>
</tr>
<tr>
<td>2ème Apistan</td>
<td>21/07/2017</td>
<td>27,00</td>
</tr>
<tr>
<td>1ère contrôle</td>
<td>28/07/2017</td>
<td>19,00</td>
</tr>
<tr>
<td>2ème contrôle</td>
<td>04/08/2017</td>
<td>12,00</td>
</tr>
<tr>
<td>1ère traitement</td>
<td>11/08/2017</td>
<td>139,00</td>
</tr>
<tr>
<td>2ème traitement</td>
<td>18/08/2017</td>
<td>39,30</td>
</tr>
<tr>
<td>2ème Apivar</td>
<td>25/08/2017</td>
<td>2,20</td>
</tr>
<tr>
<td>1ère Apivar</td>
<td>01/09/2017</td>
<td>7,80</td>
</tr>
<tr>
<td>2ème Apivar</td>
<td>08/09/2017</td>
<td>2,40</td>
</tr>
<tr>
<td>1ère Apivar</td>
<td>15/09/2017</td>
<td>1,80</td>
</tr>
</tbody>
</table>
Résumé

Les abeilles domestique Apis mellifera est une espèce essentielle dans l’écosystème pour son rôle dans les pollinisations ainsi que pour les produits de la ruche, mais elle est sujette à plusieurs maladies et parasites comme le varroa (varroa destructor).

Pour lutter contre ce parasite nous avons étudié, au laboratoire des tests par deux huiles essentielles (M.communis et P. lentiscus), pour déterminer l’efficacité de ces traitements, il ressort des résultats obtenus que les deux huiles ont exprimé une toxicité à l’égard des varroa quelle que soit la dose utilisée il est a remarquer que l’huile essentielle du myrte et plus efficace que celle lentisque, en effet nous enregistre une taux de mortalité 98.13 pour l’huile de P.lentiscus et 99.38 pour Communise. Concernant l’abeille A.mellifera le taux de mortalité est faible et est de 11.48% et 19.10% pour l’huile essentielle de lentisque et de myrtherespectivement.

Mots clés : apis mellifera, varroa destructor, traitement, huiles essentielles, lentisque,myrte.

Summary

Honey bees Apis mellifera is an essential species in the ecosystem for its role in pollination as well as for hive products, but it is prone to several diseases and parasites such as varroa destructor.

In order to control this parasite we have studied in the test laboratory two essential oils (M.communis and P. lentiscus) in order to determine the efficacy of these treatments. It appears from the results obtained that the two oils expressed toxicity to with regard to varroa irrespective of the dose used it is to notice that the essential oil of the myrtle and more effective than that lentisque, indeed we recorded a mortality rate 98.13 for the oil of P.lentiscus and 99.38 for Communise. regarding the bee A.mellifera the mortality rate is low and is 11.48% and 19.10% for the essential oil of lentisk and myrtle respectively.

Keywords: apis mellifera, varroa destructor, treatment, essential oils, lentisque, myrtle, efficacy.